

Expansion, Persistence, and Characteristics of Autologous, BHV-1100 ARMored Memory-Like NK Cells Infused Prior to Autologous Stem Cell Transplant in MRD+, Multiple Myeloma Patients

Grace Caroline Birch, PhD¹; Juliana Vergara-Cadavid, MD, MSc¹; Roman M. Shapiro, MD¹; Michela Ansuinelli, MD¹; Tuyet Nguyen¹; Carol Reynolds, PhD¹; Soo Y. Im¹; Hope Wei¹; Sarah Hogan, BSN, RN¹; Elizabeth Kendricken, BSN, RN, OCN¹; Adam S. Sperling, MD, PhD^{1,2}; Omar Nadeem, MD^{1,2}; Jacob Laubach, MD, MPP²; Alissa Rybicki³; Steven Schnittman, MD³; Elyse Stock, MD³; Diego Hernandez Rodriguez, PhD¹; Heather Daley¹; Sarah Nikiforow, MD, PhD¹; Jerome Ritz, MD¹; Robert J. Soiffer, MD¹; Giada Bianchi, MD^{*1,2,4,}; Rizwan Romee, MD^{*1,2,4,5}

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Harvard Medical School, Boston, MA, USA; ³Biohaven, New Haven, CT, USA; ⁴Brigham and Women's Hospital, Boston, MA, USA; ⁵Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA. *Co-corresponding authors.

INTRODUCTION

- Autologous stem cell transplant (ASCT) improves minimal residual disease (MRD) negativity and prolongs progression-free survival in patients with newly diagnosed multiple myeloma^{1,2}
- Multiple myeloma natural killer (NK) cells are dysfunctional, negatively impacting outcomes ^{3,4}
- BHV-1100 is an antibody recruiting molecule (ARM) that binds to CD38 target cell antigen and recruits NK cells for antibody-dependent cellular cytotoxicity (ADCC) without inducing fratricide
- Cytokine-induced memory-like (CIML) NK cells effectively treat myeloid disorders⁵
- We designed a first-in-human study of autologous CIML NK cells coated ex vivo with BHV-1100 for MRD+ patients with newly diagnosed multiple myeloma undergoing ASCT

METHODS

In the ongoing phase 1 study (NCT04634435), eligible patients had newly diagnosed MRD+ multiple myeloma and were in first or second remission without prior ASCT or allogeneic stem cell transplant

The study schematic (Figure 1) shows an overview of ASCT with BHV-1100 Figure 1. Schematic Showing Study Design

Day -1: Patients underwent nonmobilized lymphapheresis. Cells were manufactured in house from lymphapheresis (CD3 depletion, CD56 enrichment using Miltenyi CliniMACS[®]). NK cells were incubated overnight with IL-12 (10 ng/mL), IL-15 (100 ng/mL), and IL-18 (50 ng/mL) and subsequently coated with BHV-1100; **Day 0:** Patients received standard melphalan 200 mg/m² myeloablative conditioning, followed by CIML NK cell and then stem cell infusion. Low dose IL-2 (1 × 10⁶ U/m²) was administered SC (total of 7 doses). IL, interleukin; rhlL, recombinant human interleukin; SC, subcutaneously.

PATIENTS AND TREATMENT

- Data from first 5 enrolled patients are presented; median follow-up was 191 days CIML NK cells were manufactured with a 100% success rate and infused at target
- dose of 5-10 \times 10⁶ cells/kg body weight 24 hours after melphalan 200 mg/m² Patients received 3.9-6.0 × 10⁶/kg body weight stem cells
- Engraftment based on recovery of neutrophil count occurred on days 12-14
- Aside from anticipated infusion reactions, no severe or unexpected adverse events were noted
- Longer follow-up is required to assess safety and efficacy

IN VIVO RESULTS

NK Expansion and Persistence

- mononuclear cells [PBMC]) (Figure 2)
- receptor KIR+, and CD57+ (Figure 3)
- mature, activated, and cytotoxic NK cells
- Figure 2. ARMored NK Cells Expand After Infusion CD56+CD3- cells

65th American Society of Hematology (ASH) Annual Meeting and Exposition • December 9-12, 2023 • San Diego, CA