BHV-1400 TARGETS THE NON-IMMUNOSUPPRESSIVE, SELECTIVE DEPLETION OF CIRCULATING **GALACTOSE-DEFICIENT IGA1 IN IGA NEPHROPATHY**

Lawrence R Marcin¹, Anna Bunin¹, Ann Marie K Rossi¹, Kathren Croce¹, Charlotte Spliid¹, Brett M Rasile¹, Lawrence Iben², Scott Conroy¹, Ana Estrella¹, Seong Lee¹, Kathleen McGrath¹, Matthew Todd², Ada Vaill², Taiye Ibiloye², Christopher M Grant², Jim Bryson¹, Brian Linhares¹, Drake M Mellott², Jared Head¹, Wieslaw Kazmierski¹, Richard Pracitto¹, Reese Caldwell¹, David Pirman¹, Gene Dubowchik¹, Bruce Car¹, Vlad Coric¹

¹Biohaven Pharmaceuticals, Inc., New Haven, CT, USA; ²Prior employee or consultant of Biohaven Pharmaceuticals, Inc., New Haven, CT, USA.

CONCLUSIONS

- BHV-1400 is a novel, antibody-based, bifunctional conjugate designed to selectively bind and degrade pathogenic circulating Gd-IgA1 and Gd-IgA1-IgG immune complexes via ASGPR-mediated hepatocyte internalization
- 2

BHV-1400 has demonstrated compelling preclinical evidence for rapid and robust degradation of deglycosylated IgA and related protein aggregates in cellular and rodent experiments

INTRODUCTION

- IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis, with an annual incidence of 2-10 cases per 100,000 person-years^{1,2}
- Individuals with IgAN present with a range of symptoms, including hematuria, proteinuria, nephrotic syndrome, and severe hypertension¹
- Approximately 30-40% of individuals diagnosed with IgAN will develop endstage kidney disease^{1,3}
- Currently, there are no approved disease-modifying, IgAN-specific therapies. Only symptomatic treatments are available²

IgAN Pathophysiology

- IgAN is a heterogeneous autoimmune disorder characterized by deposition of IgA1-containing immune complexes in the glomerular mesangium² (Figure 1)
- Overproduction of galactose-deficient IgA1 (Gd-IgA1) and the formation of

Molecular Degraders of Extracellular Proteins (MoDE)[™] and BHV-1400

- The MoDE platform discovers and develops bifunctional molecules that degrade extracellular protein targets, such as Gd-IgA1, via the asialoglycoprotein receptor (ASGPR)-mediated endosome/lysosome pathway
- Biohaven engineered a novel anti-human Gd-IgA1 chimeric antibody (BH5305) with human constant regions, using a human IgG1 Fc with reduced effector function
- The ASGPR-binding bifunctional conjugate BHV-1400 was assembled from BH5305 in 1 step, using proprietary FcIII-directed MATE[™] technology⁵
 - Linker and ASGPR binder were attached via a stable amide connection
 - BHV-1400 was isolated with good yield and excellent homogeneity (binder-toantibody ratio = 2)
 - Site-specific conjugation of dual Lys248 residues was confirmed by peptide mapping

3

BHV-1400 recognizes pathogenic Gd-IgA1 in human IgAN and kidney disease patient plasma samples

- 4
- BHV-1400 holds therapeutic potential as a transformative, non-immunosuppressive, disease-modifying treatment for patients with IgAN

OBJECTIVE

To share biophysical target engagement data, protein of interest cellular internalization data, and rodent pharmacokinetic (PK) and pharmacodynamic (PD) data related to the degradation of exogenous deglycosylated IgA (dg-IgA) by the preclinical development candidate BHV-1400

Hit 1. Increased levels of circulatory Gd-IgA1

Hit 2. Production of IgG autoantibodies to Gd-IgA1

- Lowering levels of circulatory Gd-IgA1 and associated immune complexes has potential to decrease mesangial deposition and improve kidney function
- Reduction of circulatory Gd-IgA1 has been achieved using investigational immunomodulatory drugs, with potential improvements in proteinuria and kidney function, but with concurrent reduction of other antibodies such as IgM⁴
- Selective protein degradation of circulatory Gd-IgA1 and its complexes with BHV-1400 has the potential to stabilize or reverse the progression of IgAN, without broad immunosuppression

Figure 1. Pathogenesis of IgAN

Hit 4. Immune complex deposition in mesangium, causing renal injury

BHV-1400 is designed to simultaneously bind Gd-IgA1 and hepatocyte ASGPRs, allowing for internalization and degradation of Gd-IgA1 and Gd-IgA1-IgG immune complexes

METHODS AND RESULTS

- **BHV-1400 Demonstrates Ability to Simultaneously Engage ASGPR and Protein of Interest (POI)**
- dg-lgA is a semi-synthetic Gd-lgA1 surrogate prepared from pooled human serum IgA in 3 enzymatic steps
- BHV-1400 demonstrated strong affinity for dg-IgA (KD = 4 nM) and the carbohydrate recognition domain of ASGPR1(148-291) (KD= 9 nM)
- Evidence for the formation of a viable ternary complex with hook effect was provided by a proximity-based time-resolved fluorescence resonance energy transfer assay

2) Detection of Gd-IgA1 Levels in Human Plasma Samples

- Gd-IgA1 antibody concentrations in patient plasma samples were measured using Meso Scale Discovery with immobilized BHV-1400 and SULFO-TAG anti-IgA antibody
- Gd-IgA1 median levels in samples from patients with kidney disease and IgAN were ~4-fold higher than median levels in healthy volunteers
- Results were consistent with the literature reports using KM55 diagnostic and confirm that BHV-1400 recognizes significant levels of circulating human Gd-IgA1 and corresponding immune complexes

3) In Vitro Cellular Internalization of dg-lgA with BHV-1400

- Dose-dependent, selective endocytosis of dg-lgA vs lgA was observed with BHV-1400 in human embryonic kidney (HEK) cells transfected with human ASGPR1 (hASGPR1)
- Low-nanomolar half-maximal effective concentration and robust mean fluorescence were observed at 12 hours for internalization of dg-IgA conjugated to Alexa Fluor 594
- BHV-1400 internalized POI for lysosomal degradation but spared normal IgA

	dg-lgA	Total IgA
Max MFI	22,824	91.4
EC ₅₀ (nM)	1.75	27.5
S/N	201	101
Z prime	0.96	0.65

HEK293 cells transfected with ASGPR1 were used to measure endocytosis of 1 µg/mL dg-IgA and total IgA conjugated to Alexa Fluor 594. MFI = mean fluorescence intensity, S/N = signal-to-noise ratio.

4) Isolation of dg-IgA Aggregates by Size Exclusion Chromatography

dg-IgA conjugated to Alexa Fluor 594 was separated into 3 fractions corresponding to tetrameric, dimeric, and monomeric forms

5) Cellular Internalization of Surrogate Gd-IgA1 Antibody Complexes

- BHV-1400 demonstrated efficient internalization of dimeric and tetrameric dg-IgA complexes in HEK (hASGPR1) cells at 12 hours
- ► BHV-1400 can internalize and degrade large IgA antibody complexes

6) BHV-1400 Achieves Robust Degradation of Exogenous dg-IgA in Mice

- BHV-1400 demonstrated ASGPR-dependent clearance in wild-type (wt) mice vs ASGPR1 knockout (ko) mice after intravenous (IV) administration. Results were consistent with BHV-1400 mechanism of action
- BHV-1400 depleted exogenous dg-IgA in wt mice to 58% area under the curve of control at 2:1 (drug:target) ratio after sequential IV administration
- Parent control antibody, BH5305, had no effect on degradation of exogenous dg-IgA in wt mice, as anticipated

*median levels reported

References: 1. Lai KN, Tang SC, Schena FP, et al. IgA nephropathy. Nat Rev Dis Primers. 2016;2:16001. 2. Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: an interesting autoimmune kidney disease. Am J Med Sci. 2021;361(2):176-194. 3. Knoppova B, Reily C, King RG, Julian BA, Novak J, Green TJ. Pathogenesis of IgA nephropathy: current understanding and implications for development of disease-specific treatment. J Clin Med. 2021;10(19):4501. 4. Barratt J, Tumlin J, Suzuki Y, et al. Randomized phase II JANUS study of atacicept in patients with IgA nephropathy and persistent proteinuria. Kidney Int Rep. 2022;7(8):1831-1841. 5. Rastelli L, Spiegel DA, Welsch ME, et al, inventors; Kleo Pharmaceuticals, Inc., assignee. Directed conjugation technologies. International application PCT/US2020/061127. May 27, 2021. 6. Data on file.

Special thanks to Dr. Dennis G. Moledina and Yale School of Medicine for helping to procure patient samples

Presented at the 4th Annual Targeted Protein Degradation Summit Europe • London, United Kingdom • March 19-21, 2024