To download a copy of

Lauren C Seeberger, MD¹; Melissa Wolfe Beiner, MD²; Michele Potashman, PhD³; Anne Neumann, RN, BSN⁴; Skyler Jackson, BA⁵; Austin R Letcher, MS⁵; Patti A Engel, BSN⁶; Lauren Moore, PhD⁷; Julie Greenfield, PhD⁸; Giovanni Ristori, MD^{9,10}; Laura Heller, PharmD¹¹

¹VAMC, Department of Neurology, Boise, United States of America; ²Biohaven, Research and Development, New Haven, United States of America; ³Biohaven, Clinical Outcomes Assessments and Health Economics, New Haven, United States of America; ⁴Biohaven, Patient Advocacy and Engagement, New Haven, United States of America; ⁵Engage Health, Qualitative Research, Eagan, United States of America; ⁶Engage Health, CEO, Eagan, United States of America; ⁷National Ataxia Foundation, Golden Valley, United States of America; ⁸Ataxia UK, London, United States of America; ⁸Ataxia UK, UNITED UK, Kingdom; 9Sant'Andrea Hospital, Sapienza University of Rome, Department of Neurosciences, Mental Health and Sensory Organs, Rome, Italy; 10IRCCS Fondazione Santa Lucia, Neuroimmunology Unit, Rome, Italy; 11Biohaven, Medical Affairs, New Haven, United States of America

► To be eligible for participation in this study, individuals were required to have symptomatic SCA1, SCA2,

Surveys were conducted in English, French, German, or Portuguese with patients or caregivers.

difficulty speaking or had passed away within the 2 years prior to study initiation.

Foundation, Ataxia UK, and the Engage Health EnCompass® database.

Caregivers and spouses of PWSCA participated if the PWSCA either was currently living but had

Participants were predominantly recruited from the US, the UK, Canada, Australia, France, Germany,

▶ The study consisted of 2 phases. The targeted total sample size for phase 1 was 100. A subset of

phase 2. Quota sampling, purposive sampling, and saturation analysis were used to ensure a

and Brazil through the Coordination of Rare Diseases at Stanford (CoRDS) Registry, National Ataxia

individuals was selected from phase 1 to participate in qualitative semi-structured interviews during

representative sample of SCA types and to increase the probability that the data collected in the study

were representative of patients with SCA1, SCA2, SCA3, and SCA6. Initially, the study sought to obtain

input from 15 PWSCA and/or caregivers representing each SCA type (SCA1, SCA2, SCA3 and SCA6)

for interviews (convenience sampling). After themes were coded by 2 independent coders and a

(quota sampling). Persons who volunteered to participate and provided proof of disease were scheduled

saturation analysis was conducted to determine the saturation of themes, an additional 5 persons were

sought for each SCA type, with priority given to those residing outside the US (purposive sampling). The

► All participants who spoke English or German and completed phases 1 and 2 were invited to take part in

This poster reports data from participants who completed both phase 1 and phase 2 of the study as well

Proof of SCA was confirmed by laboratory testing (68.8%), medical record (14.0%), or physician communication

this poster, scan QR code.

PURPOSE

This study aims to capture burden-of-disease experiences of persons with spinocerebellar ataxia (PWSCA) and their caregivers.

BACKGROUND

- Spinocerebellar ataxias (SCAs) are a group of dominantly inherited, ultra-rare, progressively debilitating neurodegenerative disorders that currently have no treatments that can stop or slow disease progression. 1-5
- PWSCA experience loss of motor coordination, including gait disturbances, loss of balance, and associated falls, as well as cognitive impairment and difficulty with speech and swallowing, all of which worsen over time. 1-4,6-9
- Furthermore, SCA can significantly disrupt mental and social well-being and overall quality of life
- Of the more than 40 distinct genotypes that comprise SCAs, genotypes 1, 2, 3, and 6 are the most
- Lived experiences of PWSCA offer essential insights regarding care and treatment. More data regarding these experiences are needed to better understand the impact of SCA over time, identify potential therapeutic goals, and determine optimal modalities for providing care to PWSCA.¹¹
- This global study describes burden-of-disease experiences of PWSCA, including those with SCA1, SCA2, SCA3, and SCA6 and their caregivers.

CONCLUSIONS

- Data from this global, cross-sectional, mixed-methods study involving PWSCA (convenience sample) highlight the significant burden that gross motor challenges (including loss of enjoyable activities, impaired mobility, lack of balance, and falls) have on QOL.
- Mean summary scores for physical and mental components of the SF-36 were numerically lower in PWSCA across all 4 SCA types, and lowest in PWSCA3, compared to the general population. PWSCA3 also were most likely to be wheelchair-bound.
- In follow-up surveys, 53 of 70 participants (75.7%) reported experiencing at least 1 fall during the past year. Among PWSCA3, 81.2% experienced at least 5 falls in the past year. Most participants indicated that fear of falls affected their daily lives.
- The majority of participants reported that they would find an approved medication that slowed or stabilized the progression of SCA to be "extremely meaningful." Furthermore, most PWSCA3 and PWSCA6 rated falling as an outcome of an approved therapy "extremely important."
- "If I was not so fearful of falls (and the potential damage that the fall may inflict on me), this could open up a steadily closing door in my activities." (PWSCA3)
- (6) "To have medication available would improve the life of myself and my family. I constantly worry about the future. We are not able to plan because I don't know how my health will be." (PWSCA6)

Disclosures: LS: consultation for Biohaven, Neurocrine Biosciences advisory board and research support, Teva research support; MWB, MP, AN, LH: employed by and hold stock/stock options in Biohaven; SJ, AL, PE: employed by Engage Health (Engage Health was paid a fee by Biohaven for the service of conducting, fielding, and analyzing the study. Engage Health has or is conducting disease burden studies for: Amicus Therapeutics, Ayala Pharmaceuticals, Biohaven, the Jett Foundation, Little Hercules Foundation, the International Fibrodysplasia Ossificans Progressiva Association, KrabbeConnect, National Niemann-Pick Disease Foundation, Theranexus, and Inozyme Pharma. None of these studies, other than that for Biohaven, is specific to SCA, although the studies use similar methodologies); **JG:** no disclosures to report; **GR:** provided paid consultation for Biohaven; **LM:** Biohaven has provided financial support to the National Ataxia Foundation (NAF) through membership in NAF's Drug Development Collaborative. Biohaven has provided partial sponsorship for several NAF meetings, including the Annual Ataxia Conference for patients and family members (2020-2023), Ataxia Investigators Meeting (2020), and 2022 International Congress of Ataxia Research.

Table 1. Participant Attrition

Total number of people who visited the RSVP site, gave consent, and provided some information	347
People excluded because they did not complete the SF-36 or modified Klockgether Functional Staging of Ataxia measurement, did not provide proof of disease, or lacked proof of disease sufficient for enrollment	161
Completed phase 1 of the study	186
∘ Caregivers	3
o Patients	183
Completed phases 1 and 2 of the study	80
○ Caregivers	3
○ Patients	77
Follow-up surveys related to falls and/or desired therapeutic outcomes	
 Contacted for survey 	77
 Completed survey 	70
o Caregivers	2
o Patients	68

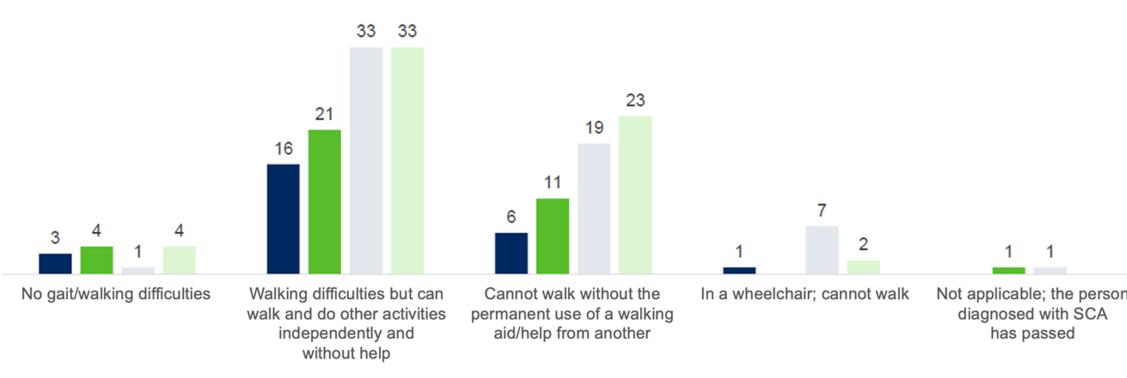
Table 2. Demographic Data and SF-36 Scores for Study Participants Who Completed Phases 1 and 2

	SCA1 (n = 20)	SCA2 (n = 20)	SCA3 (n = 20)	SCA6 (n = 20)	P value
Female / male	14 / 6	10 / 10	12 / 8	10 / 10	
Mean age (yrs) (range)	50.2 (28.0–75.0)	45.5 (26.9–74.3)	52.6 (31.6–73.9)	64.5 (48.9–86.0)	
Mean age (yrs) at first clinical suspicion	43.9	35.8	41.6	56.2	
Mean age (yrs) at genetic diagnosis	45.1	40.2	45.4	58.2	
Geography					
Americas	14	13	14	12	
Europe and UK	6	5	5	6	
Asia	0	2	0	0	
Africa/Middle East	0	0	0	0	
Australasia	0	0	1	2	
Mean SF-36 Scores					
SF-36 physical summary	44.7*	42.8*	36.7*	40.7*	0.11
SF-36 mental summary	47.8*	47.5*	45.4*	48.7*	0.85
SF-36 physical functioning	52.4*	50.8*	32.9*	39.0*	0.14
SF-36 role, physical	66.5*	65.5*	37.8*	51.3*	0.02 [†]
SF-36 bodily pain	79.6*	72.4*	59.3*	79.9*	0.05 [†]
SF-36 general health	50.8*	49.8*	50.3*	54.0*	0.93
SF-36 vitality	54.3*	41.8*	43.4*	45.4*	0.38
SF-36 social functioning	67.8*	68.4*	55.3*	63.8*	0.44
SF-36 role, emotional	78.1*	78.1*	61.4*	74.2*	0.21
SF-36 mental health	66.1*	67.9*	63.4*	70.5*	0.82

- ▶ Mean age ranged from 45.5 to 64.5 years. PWSCA2 were the youngest population and the youngest at diagnosis; PWSCA6 were the oldest population and the oldest at diagnosis (Table 2).
- ▶ The majority of participants were from the Americas, including 45 (56.3%) from the US (**Table 2**).

SF-36 by SCA Type

▶ Mean SF-36 physical and mental summary scores were numerically lower compared to the general population for all SCA types and were lowest in PWSCA3 (Table 2).


PWSCA3 reported significantly lower scores for bodily pain and physical role subscales than did participants with other SCA types.

- ▶ 2 PWSCA were deceased at the time of data gathering. Therefore, functional status, as measured by the modified Klockgether Functional Staging of Ataxia questionnaire, was chronicled for 78 of 80 PWSCA (Figure 1).
 - The majority of participants (94.6%) were ambulatory.

PWSCA3 were most likely to be wheelchair-bound, and PWSCA6 were most likely to need a walking aid. **Relation Between Functional Status and SF-36**

▶ There was a direct linear correlation between scores on the modified Klockgether Functional Staging of Ataxia

Figure 1. Functional Status by SCA Type

■SCA1 ■SCA2 ■SCA3 ■SCA6

Figure 2. Most Important Disease-Related Burden Category Among Persons With SCA

■SCA1 ■SCA2 ■SCA3 ■SCA6

Most Important Disease-Related Burden

- Gross motor challenges were ranked as the most important burden across all SCA types. Difficulties with speech were identified as the second most important burden among PWSCA1 and PWSCA6, and challenges with independent living were the second most important burden among PWSCA2 and PWSCA3 (Figure 2).
- Of a possible 8000 points denoting burden, interview participants allotted the highest scores to issues regarding gross motor function (42.2% of points), speech (13.9% of points), and independent living (12.3% of points). These 3 burdens ranked highest even when participants were provided a comprehensive list of burdens to review and then asked whether they wanted to change the rankings of their previously scored burdens.
- Of a possible 3376 points denoting burden for gross motor issues, participants gave the highest scores to impaired mobility (46.6% of points), loss of enjoyable activities (9.0% of points), and lack of balance (25.8% of points).
- Furthermore, 59 participants (73.8%) spontaneously reported that they experienced a fall over the course of their disease.

Study Design

- Phase 1: Secured Online Quantitative Assessments
 - Participants provided demographic data, completed a modified version of the Klockgether Functional Staging of Ataxia questionnaire (a physician-administered tool that assesses SCA functional status, modified with patient-friendly language), and completed the SF-36® QOL measure via a secure, HIPAA/508/GDPR-compliant, multilingual online portal.
 - The SF-36v2 utilizes norm-based scoring with a linear T-score transformation method such that each of the health domain scores and summary components have a mean of 50. Scores below or above 50 reflect scores below and above those of the 2009 US general population, respectively. Scores lower than 50 represent a lower QOL than that in the general US population.¹²
 - Post-hoc ANOVAs of SF-36 scores were performed to calculate nominal P values comparing values between SCA types, where P < .05 indicated a statistically significant difference (Excel 2016. Version 2308. Microsoft Corporation.)
 - The relationship between participants' self-assessment of functioning using the modified Klockgether Functional Staging of Ataxia scale and physical health measured by the SF-36 was evaluated using linear correlation coefficients (Excel 2016. Version 2308)
 - Microsoft Corporation.). Given the self-reporting nature of the SF-36 assessment, only PWSCA were invited to complete the SF-36 QOL and associated
- Phase 2: Semi-Structured Qualitative Interviews

measurements; caregivers were excluded.

- Trained interviewers conducted 90-minute, semi-structured telephone interviews with participants in the participant's native language. Interviews consisted of open- and closed-ended questions regarding disease burden. All questions were derived from a comprehensive review of the medical literature and discussions with both disease experts and leaders of patient support organizations.
- Skip logic was used to ensure that participants were only asked questions that pertained to them. Participants had the option to abstain from any In an unaided fashion, participants were first asked to list and rank disease-related burdens that were important to them, using scores of 0-100
- Afterwards, participants were asked about symptoms associated with SCA, which were drawn from PROM-Ataxia, the medical literature, and
- transcripts of prior patient-focused meetings. This qualitative methodology has previously been described and used in other forums.¹³

► Follow-Up Surveys

falls reported (Figure 3).

PWSCA6 (Figure 4).

Total Number of Falls

Average Number of Falls

Falls

- Follow-up questionnaires were shared with participants to better understand their desired therapeutic outcomes and experiences related to falls. Participants chose to complete the follow-up survey online, by phone, or via both methods.
- If a participant did not previously report having a fall, they received a questionnaire that excluded questions pertaining to experiences with falls.
- The study received institutional review board (IRB) and ethics approval from WCG IRB prior to initiation and again prior to the administration of follow-up surveys. Participants provided consent in their native language via the online portal prior to engaging in study activities.

In follow-up surveys, 53 out of 70 participants (75.7%) reported experiencing at least 1 fall over the course of the

▶ The majority of injuries resulting from falls (2280, 99.2%) were minor (including broken tooth, cuts or lacerations,

bumps and bruises, swelling, muscle pain/discomfort, and limited range of motion). However, there were 17

movement, and increased concentration on not falling. On a scale of 1 to 10, with 10 denoting extreme impact,

(67.9%) rated this factor as 5 or higher, and 46 (86.8%) rated it as 2 or higher. The mean score was highest in

30 of the 53 participants who experienced a fall (56.7%) rated the impact of fear of falling as 6 or higher, 36

Participants reported that falling resulted in increased reliance on others and changes in their daily routines.

Many participants reported that fear of falling impacted their daily life; this included fear of injury, slower

In total, 53 participants experienced 2850 falls over the past year. Falls in PWSCA3 represented 71.5% of all

past year. Among PWSCA3, 81.2% experienced at least 5 falls in the past year.

emergency room visits and 1 hospital admission reported for fall-related injuries.

Figure 3. Number of Falls by SCA Type in the Past Year

75

SCA1

Figure 4. Impact of Fear of Falling on Lives of PWSCA

■ 0-5 Falls

Participant Disposition

RESULTS

follow-up surveys.

METHODS

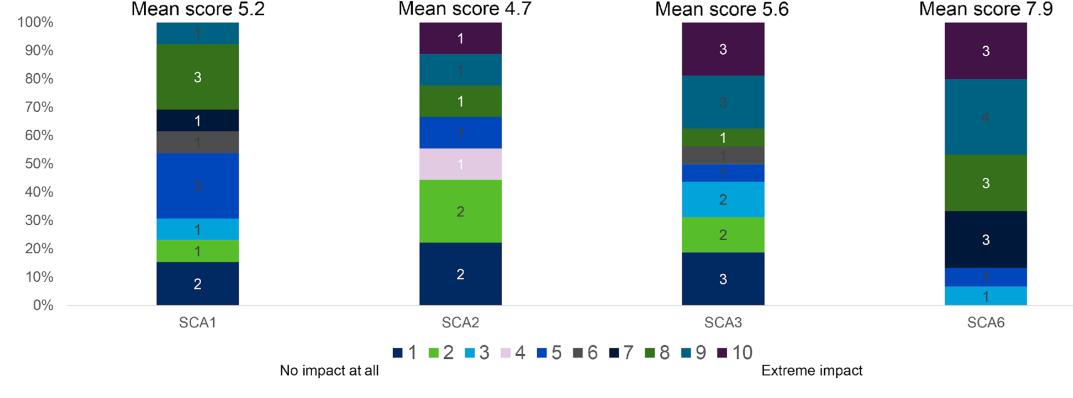
(17.2%).

Study Participants and Recruitment

targeted total sample size for phase 2 was 60.

as those who completed the follow-up surveys.

SCA3, or SCA6 and proof of disease.


- ▶ 347 individuals accessed the online site and provided preliminary information, including consent. Of these individuals, 161 were excluded due to failure to complete the modified Klockgether Functional Staging of Ataxia questionnaire or the SF-36 assessment, lack of proof of disease, or proof of disease that was deemed insufficient for study enrollment (Table 1).
- ▶ 186 individuals participated in phase 1; 80 individuals, including 3 caregivers (2 caregivers for 2 PWSCA who died and 1 parent of a PWSCA), participated in both phase 1 and phase 2 (Table 1).
- > 77 participants were contacted to complete a follow-up survey pertaining to their experiences with falls and/or desired therapeutic outcomes, of whom 70 (90.9%) completed survey questionnaires (**Table 1**).

Demographics

- There was equal representation of all 4 SCA types (n = 20 for each SCA type). Caregivers represented 1 PWSCA1, 1 PWSCA2, and 1 PWSCA3; no caregivers of PWSCA6 participated in the study (**Table 2**).
- Among participants, 57.5% were female.

Functional Status by SCA Type

assessment and the physical component summary of the SF-36 (R^2 = .472).

■ 6-10 Falls ■ 11-30 Falls

SCA3

■ 31-50 Falls

■ 51+ Falls

Desired Therapeutic Outcomes

- ▶ When asked to describe a specific impact (other than a cure) that they wished to see from a potential therapy developed for their type of SCA, most participants (47, 67.1%) desired that the therapy would address issues regarding mobility, speech, or balance.
- In the follow-up survey, the majority of participants (64, 91.4%) reported they would find an approved medication that slowed or stabilized disease progression as "extremely meaningful" (5 on a scale of 0-5). In particular, the majority of PWSCA3 and PWSCA6 (≥50% in each group) rated the importance of falling as an outcome of an approved therapy as 10, or "extremely important" on a scale of 1-10.
- Participants reported that a medicine that slowed or stabilized disease progression would provide hope as well as the ability to maintain their daily physical activities and QOL and, as a result, potentially improve their mental well-being.

Table 3. Illustrative Quotes Regarding Disease Burden, Falls, and Desired **Therapeutic Outcomes**

	Disease Burden	"I don't want to be perfect; I just want to do things normally without too much difficulty. I don't want to ask for help. It's a very hard condition to deal with—debilitating. They should find a solution as quickly as possible." (PWSCA2)
	Falls	"I have been cautioned by my doctors not to fall, as my symptoms get worse after each one and I do not recover to the point where I was previously. I need someone to help me go up a curb or step if there is no rail or if I can't find a cutout in the sidewalk. I have to think about where to sit in places like theaters or church because I need to be able to get there safely and stand back up. It is becoming harder to remain independent out of my home." (PWSCA1)
	Fear of Falling	"I am extremely careful to NOT fall. I use a walker frequently, go up and down stairs 1 step at a time, etc. My daily life consists of BEING CAREFUL to avoid falls." (PWSCA6)
	Therapeutic Outcomes	"It would be amazing to have a drug that slowed the progression of this disease. Knowing I have it [SCA] and now waiting for symptoms to develop has impacted my mental health. Having the ability to slow/stop this would allow me to live a normal and hopefully carefree life to the fullest." (PWSCA6)

Acknowledgments

We would like to thank the many patients and families who dedicated time and shared experiences to support this work; the teams at the National Ataxia Foundation, Ataxia UK, and CoRDS for their support with patient recruitment; and Eubio for medical writing assistance.

References: 1. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers. 2019;5(1):24. 2. Diallo A, Jacobi H, Tezenas du Montcel S, Klockgether T. Natural history of most common spinocerebellar ataxia: a systematic review and meta-analysis. J Neurol. 2021;268(8):2749-2756. 3. Yap KH, Azmin S, Che Hamzah J, Ahmad N, van de Warrenburg B, Mohamed Ibrahim N. Pharmacological management of spinocerebellar ataxia: a systematic review. J Neurol. 2022;269(5):2315-2337. 4. Matilla-Dueñas A, Ashizawa T, Brice A, et al. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. Cerebellum. 2014;13(2):269-302. 5. Institute for Clinical and Economic Review. Modifications to the ICER value assessment framework for treatments for ultra-rare diseases. November 2017. Updated January 31, 2020. Accessed July 28, 2023. https://icer.org/wp-content/uploads/2020/10/ICER URD Framework Adapt 013120.pdf 6. Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis. 2016;11(1):82. 7. What is ataxia? National Ataxia Foundation. Accessed September 16, 2022. https://www.ataxia.org/what-is-ataxia/ 8. Machado-Joseph disease and the spinocerebellar ataxias fact sheet. National Institute of Neurological Disorders and Stroke. February 2010. Updated June 7, 2021. Accessed September 16, 2022. https://www.ninds.nih.gov/health-information/disorders/spinocerebellar-ataxias-including-machado-joseph-disease 9. Ganapathy VS, James TT, Philip M, et al. Anteroposterior stability: a determinant of gait dysfunction and falls in spinocerebellar ataxia. Ann Indian Acad Neurol. 2021;24(4):518-523. 10. Diallo A, Jacobi H, Cook A, et al. Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurol. 2018;17(4):327-334. 11. Schmahmann JD, Pierce S, MacMore J, L'Italien GJ. Development and validation of a patient-reported outcome measure of ataxia. Mov Disord. 2021;36(10):2367-2377. 12. Maruish ME, ed. User's manual for the SF-36v2 Health Survey. 3rd ed. QualityMetric Incorporated; 2011. 13. Data on file. Biohaven Pharmaceuticals. 2023. 13. Jackson S, Valentine JE, Engel P. Rare disease qualitative research: methodologies for conceptual strength and representativeness. Poster presented at: WORLDSymposium; Feb 10, 2020; San Diego, CA.